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Energy stability theory has been applied to a basic state of thermocapillary 
convection occurring in a cylindrical half-zone of finite length to determine 
conditions under which the flow will be stable. Because of the finite length of the 
zone, the basic state must be determined numerically. Instead of obtaining stability 
criteria by solving the related Euler-Lagrange equations, the variational problem is 
attacked directly by discretization of the integrals in the energy identity using finite 
differences. Results of the analysis are values of the Marangoni number, Ma,, below 
which axisymmetric disturbances to the basic state will decay, for various values of 
the other parameters governing the problem. 

1. Introduction 
Thermocapillary convection is a fluid motion driven by surface-tension gradients 

on a liquid-gas interface, where these gradients arise from surface-temperature 
gradients and the temperature dependence of surface tension. This type of convection 
plays an important role in many technological and scientific applications ; interesting 
examples may be found in the field of materials processing, particularly crystal- 
growth processes in which bulk melts are found. One such crystal-growth process is 
the so-called ‘ float-zone ’ technique by which high-purity electronic materials 
(notably silicon) can be produced. In this method a rod of polycrystalline material 
is moved slowly through a heating device which melts a portion of it. Ideally, as the 
melt resolidifies it does so as a single crystal which is then used as substrate for 
building microelectronic devices. Since the method is containerless, the possibility of 
contamination by contact with other materials is reduced. However, because 
surface-tension forces must support the weight of the material contained in the zone, 
the size of the resulting crystal is limited in Earth-based production ; in fact, some 
materials have properties which prevent this process from being used to manufacture 
crystals of reasonable size. Consequently, a microgravity environment such as that 
provided by the Space Shuttle has been suggested as a possible site for growing 
bigger, and hopefully better, crystals. 

In addition to allowing larger crystals to be grown, a microgravity environment 
would also significantly reduce the magnitude of convection induced by buoyancy 
forces. This convection was once thought to be at least partly responsible for the 
presence of undesirable non-uniformities in material properties called striations 
observed in float-zone material. Recent speculation, however, is that the onset of 
time-dependent thermocapillary convection (Preisser, Schwabe & Scharmann 1983) 
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FIQURE 1. The half-zone, showing geometric and thermal conditions, both in dimensional and 
dimensionless forms. 

is actually responsible for the appearance of these striations. Since this mode of 
convection will exist in any gravitational environment, the stability properties of 
thermocapillary convection are of possible technological importance ; the identi- 
fication of a region in an appropriate parameter space which is free of oscillatory 
thermocapillary convection is particularly relevant. 

The flow domain of an actual float zone is very complicated. It is bounded by non- 
planar melting and freezing solid-liquid interfaces and a deformable free surface, all 
of which are influenced by the translation of the material through the heater. Forced 
convection, due to independent rotation of the feed/seed material which is utilized 
to reduce asymmetry in the external heating, may be present. Model experiments, 
however, have been designed to eliminate several of the features in an actual float 
zone (i.e. translation, rotation, and melting/freezing interfaces) and to minimize the 
influence of buoyancy relative to thermocapillarity. These experiments show that, 
under certain critical conditions, steady thermocapillary convection undergoes an 
abrupt transition to an unsteady, oscillatory-flow state. Hence, understanding of 
such a transition in an actual float zone may be furthered by first studying its 
occurrence in this simpler situation. 

A schematic of one of these so-called half-zone experiments is shown in figure 1. 
Two coaxial cylindrical rods of radius R with planar ends are oriented a distance H 
apart with their axes in the direction of gravity. A liquid zone is created between the 
ends and the rods are heated differentially, with the upper rod being at  a higher 
temperature (TH) than the lower (TC). Since the imposed axial temperature gradient 
within the liquid is vertically upward (and the radial temperature gradients are 
small) the half-zone is stably stratified from the standpoint of buoyancy. However, 
the temperature gradient which exists along the free surface causes motion along the 
free surface from the hot cylinder to the cold one, thereby driving bulk 
thermocapillary convection with the sense of circulation shown in the figure. The 
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flow and temperature properties of the half-zone are meant to approximate the 
situation in the lower half of an actual float-zone melt, 

Several experiments of this variety have been performed, both in full (1 -9) 
gravity and microgravity environments. We shall mention only a few of these for the 
purpose of motivating further discussion. Chun (1980) performed experiments using 
zones of silicone oils and octadecane (CI8H3J which were 3 mm in diameter and of 
various aspect ratios (r = H / R ) .  Temperatures were monitored at two locations near 
the free surface at  opposite sides of the zone. As the temperature difference T,-T, 
across the zone was increased, two modes of oscillatory thermocapillary convection 
were observed, depending on the value of T; for r< 0.9, an axisymmetric mode of 
oscillation was observed while for larger aspect ratios, the oscillation was non- 
axisymmetric. Preisser et a,?. (1983) performed similar experiments using half-zones 
of sodium nitrate (NaNO,), monitoring the temperature oscillations occurring within 
the zone. Only non-axisymmetric oscillatory convection (determined by means of 
flow visualization) was reported. Kamotani, Ostrach t Vargas (1984) used 
hexadecane and Fluorinert FC-43 with an aspect-ratio range of 0.2 < r< 2 and also 
report only non-axisymmetric oscillatory convection. However, recent experimental 
results (D. Schwabe, private communication) indicate that axisymmetric oscillatory 
convection is possible in certain regions of aspect-ratio/Prandtl-number space. 
Kamotani et al. also stress the importance of free-surface deformation to the 
mechanism they postulate to be responsible for the occurrence of oscillations. The 
onset of oscillatory thermocapillary convection has also been observed (e.g. Schwabe, 
Preisser & Scharmann 1982) in experiments performed in a microgravity en- 
vironment, underscoring its potential effects on crystal growth in space. 

One of the problems associated with model experiments is the inability to model 
all of the parameters relevant to an actual float zone. Perhaps the most significant 
example is the Prandtl number Pr e Y / K ,  where v and K are the kinematic viscosity 
and thermal diffusivity, respectively. Prandtl numbers for materials grown by the 
float-zone process are 0(10-2) while those for the fluids typically used in model 
experiments are O( 10). The principal reason for this is that crystal-growth melts are 
optically opaque, while transparent fluids are desired for model experiments so that 
flow visualization can be employed. Another problem associated with laboratory 
experiments is the degree of uncertainty in the material properties themselves. One 
of these in particular, the rate of change of surface tension with respect to 
temperature (used in the construction of the dimensionless Marangoni number), is 
not known to a high degree of accuracy for most materials. 

There has been a large amount of analytical and numerical work on various aspects 
of thermocapillary convection. Sen & Davis (1982) employed asymptotic methods to 
compute steady thermocapillary convection in a two-dimensional slot with vanishing 
depth-to-width' (aspect) ratio, while Zebib, Homsy & Meiburg (1985) calculated 
numerical solutions for the two-dimensional problem with unit aspect ratio. 
Likewise, thermocapillary and/or forced convection in a cylindrical geometry have 
been treated analytically by Xu & Davis (1983), Smith ( 1 9 8 6 ~ )  and Kuhlmann 
(1989) and numerically by Chang & Wilcox (1976), Clark & Wilcox (1980) and Fu & 
Ostrach (1985). 

In the language of stability theory, the above work provides examples of what are 
called basic states. There has been some research on the linear stability of a few of 
these basic states (Smith & Davis 1983a, b ;  Xu & Davis 1984, 1985; Smith 1986a, 
b)  which has identified a variety of instability mechanisms and the appropriate 
associated parameter spaces. 
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Unlike linear stability theory, energy-stability theory provides a sufficient 
condition for stability of a given basic state to disturbances of arbitrary amplitude. 
Previous applications of energy-stability theory have been made for buoyancy and 
Marangoni convection. Davis (1969) used energy-stability theory to  analyse 
buoyancy and surface-tension-driven flow instabilities for non-deforming free 
surfaces. A comparison of the optimal stability limit with previous linear and 
nonlinear results showed that they are in reasonable agreement, indicating that 
energy-stability theory does yield results of practical utility for this case. Davis & 
Homsy (1980) extended this theory to  problems with deformable free surfaces and 
found that surface deflection is stabilizing. 

In  order to gain further understanding of the stability properties of thermo- 
capillary convection in a cylindrical geometry, we have chosen to model the half- 
zone examined experimentally by others. The previous work of Xu & Davis (1983, 
1984,1985) modelled the half-zone as having an infinite aspect ratio so that the basic- 
state velocity and temperature profiles in the core region of the zone could be 
described analytically. The results obtained using linear stability theory gave 
sufficient conditions for instability (in terms of a Marangoni number) which are 
nearly two orders of magnitude below those obtained experimentally. Once reason 
speculated by Xu & Davis for this discrepancy was their assumption of infinite zone 
length, a finite-length zone being susceptible to a smaller class of disturbances. In  the 
hope of obtaining results which are in better agreement with the model experiments, 
we compute the basic state for a finite-length zone using numerical (finite-difference) 
methods. The basic-state velocity and temperature fields are therefore two- 
dimensional, rather than one-dimensional as in the work of Xu & Davis. This means 
that the subsequent stability problem will be governed by partial-differential 
equations, rather than by ordinary differential equations. 

We also choose to employ energy-stability theory rather than linear stability 
theory for our first analysis of this basic state under the rationale that the 
identification of regions of stability can be of possible technological importance. If 
the crystal grower is able to adjust the process to  stay below this limit, then it may 
be possible to grow striation-free material. An unconventional approach is used in 
the application of energy theory to  our numerically determined basic state ; rather 
than solving an eigenvalue problem defined by the Euler-Lagrange equations 
(corresponding to  the standard variational problem), we shall attack the variational 
problem more directly by finite-difference discretization of the functional which 
appears. 

The basic-state computation is outlined in $2, and the stability analysis and results 
are presented in $3  and $4. Comparison with available experimental results for model 
half-zones shows that the energy-theory results for axisymmetric disturbances do 
not appear to be overly conservative (small). 

2. Basic state 
The basic state of interest is one of swirl-free thermocapillary convection in a 

model half-zone of 0(1) aspect ratio. The flow and temperature fields are two- 
dimensional and must therefore be obtained numerically for the nonlinear cases of 
interest. 

We model the liquid zone as a Newtonian, Boussinesq fluid and choose scales for 
length, velocity and pressure to  be R, y(TH - Tc) /p ,  and y(TH- T,)/R, respectively. 
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The quantity p is the dynamic viscosity coefficient and y > 0 is the rate of decrease 
of surface tension u with temperature as defined by 

u = a,-y(T-Tm), 

where T, = g(TH + Tc) is the mean temperature of the two solid cylinders and a, is 
the surface tension at temperature T,. The velocity scale is the Marangoni velocity 
(Sen & Davis 1982) obtained by balancing the surface-tension gradient along the 
interface with the jump in shear stress. A dimensionless temperature is defined by 

The resulting dimensionless governing equations for the basic-state velocity 
U = (U ,  0, W ) ,  pressure P and temperature fields are 

1 
r 
- (rU),+ W, = 0, (2.1) 

(2.2) 
U 

Re (UU,+ WU,) = -PT+V2U--  r2 ' 

where 

Re(UW,+ WW,) = - P z + V 2 W + G @ ,  Gr 

Ma (UO,+ WQ,) = V2Q,  

The three dimensionless parameters which appear are 

Reynolds number 

Grashof number 

Marangoni number 

where g is the gravitational acceleration, a is the coefficient of volumetric expansion 
and the conventional subscript notation has been used to denote partial 
differentiation. The Prandtl number is obtained from the quotient Mu/Re. 

We assume, as a first approximation, that the free surface is not permitted to 
deform, and so is fixed at r = 1. This corresponds to requiring that the volume of 
liquid in the half-zone is n r a n d  that the mean surface tension, urn, is asymptotically 
large. The boundary conditions applied to complete the problem specification are : 

u=w=o,  @=-i;  z = o ,  (2.5 a-c) 

u = w = o ,  o=g; z=r,  (2.6 a-c) 
-U u = 0, u,+ w, = -ez, --P+ZU, = - , 0, = - S i [ Q - @ , ( z ) ] ;  r = 1, 
u,,, Ca 

( 2 . 7 ~ 4 )  

U =  W , = Q , = O ;  r = 0 .  (2.8 a-c) 
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Equations (2.5) and (2.6) express the kinematic and no-slip conditions and the 
requirement of isothermal surfaces, while ( 2 . 7 ~ )  is the kinematic condition on the free 
surface. Equations (2.7 b,  c) represent the shear and normal-stress balances. 
Symmetry conditions at the axis of symmetry are given by (2.8). The additional 
parameter appearing in (2.7d), which models the heatitransfer mechanism at  the free 
surface, is the Biot number, 

Bi = hR/k 

where h is a heat-transfer coefficient and k is the thermal conductivity of the liquid. 
Since h may vary with z, in general, Bi = Bi(z). This simple conductive mechanism 
for heat transfer between the liquid and the external environment (at specified 
temperature 0 , (z ) )  was adopted for consistency with the work of Xu & Davis (1983, 
1984, 1985). For the majority of the calculations O&) = -4, i.e. the environment 
was assumed to be a t  a constant temperature equal to that of the cold cylinder a t  
z = 0. Condition ( 2 . 7 ~ )  contains the capillary number 

Y(TH - Tc)  Ca = 
urn 

which vanishes in the limit of a non-deformable free surface. Hence, this condition 
is not required in the present analysis. 

The numerical solution of this problem is accomplished by first transforming to a 
stream-function/vorticity form, thereby eliminating the pressure. The stream 
function Y and the vorticity I; are defined by 

1 1 
r 

U=;Yz ,  W = - - Y r ,  I ; =  U,-W,, 

and the problem to be solved transforms to 

1 c Gr YZCr--- YTcz ) = V2c- - - -Or ,  r2 Re r 

(2.91 

(2.10) 

(2.1 1)  

with boundary conditions 

(2.12 a-f ) 
1 
r 

Y=O, <=-Y,,, @ = T i ;  z = o , r ,  
y = c = @  = O ;  r = 0 ,  (2.13 a-c) 

Y = 0, 6 = O,, 0, = --Bi[8-00,(z)]; r = 1. (2.14 a-c) 

These equations are solved using a modification of the predictor-corrector multiple 
iteration (PCMI) technique employed successfully by Neitzel & Davis (1981) and 
Neitzel (1984) to study centrifugally unstable flows in cylindrical geometries ; the 
reader is referred to these papers for details. The modification consists of the addition 
of the energy equation (2.11) and replacement of the time-stepping (since we are 
computing a steady solution) by an outer-iteration loop for solving the vorticity 
equation (2.10). The energy (2.11) and stream function (2.9) equations are solved in 
an inner loop by successive line over-relaxation (SLOR). Mesh stretching is employed 
in the radial direction when necessary to  resolve steep gradients which can exist there. 
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r = O  

r = O  

FIGURE 2. Basic-state isotherms and streamlines for r = 1, Mu = 100, Gr = 0, Bi = 0.3 and 
&I&) = 2-4. (a)  Pr = 0.01, ( b )  Pr = 10. 

Convergence is achieved for the inner loop in typically less than 25 iterations for a 
relative error of For the outer loop, anywhere from 20 to 2800 iterations can be 
required, depending on the parameters of the problem and the mesh employed. The 
CPU time required to calculate a typical basic state on an IBM 3090 computer for 
a 41 x 41 mesh using double-precision arithmetic is roughly 20 s. 

States of steady thermocapillary convection were computed for a variety of 
parameters to check the validity of the results before proceeding with a stability 
analysis. Available for comparison were the numerical results of Fu & Ostrach (1985), 
the analytical solution of Xu & Davis (1983) for very long zones and recent 
analytical, two-dimensional solutions of Kuhlmann ( 1989) valid for circumstances in 
which the flow in the half-zone possesses symmetry about the midplane z = t. In  all 
cases, the comparison is favourable and it is felt that the basic state is being 
computed faithfully. 

All computed half-zone flows consist of a single toroidal cell with flow at the 
surface in the direction opposite to that of the surface-temperature gradient, as 
expected. As previously mentioned, one of the difficulties associated with 
extrapolation of the results of model experiments to cases of interest to crystal 
growers is the fact that the Prandtl number is different by a couple of orders of 
magnitude in the two situations. A case with moderate Marangoni number and 
exterior environment temperature which is linear in z is shown in figure 2 ; in figure 
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FIGURE 3. Free-surface temperature profiles for r= 1, Pr = 1, Gr = 0, Bi =0.3 

and Q,(z) = -+. 

2 (a ) ,  Pr = 0.01, while in figure 2 ( b ) ,  Pr = 10. These Prandtl numbers are roughly 
representative of molten silicon and sodium nitrate (the material used in the model 
experiments of Preisser et al. 1983), respectively. The distortion, a t  high Pr ,  of the 
isotherms from the nearly conductive low-Pr state and shift in the centre of the eddy 
are clearly evident in the figure. 

Also of interest is the effect of Marangoni number on the free-surface temperature 
profile, since it is the surface-temperature gradient which serves as the driving force 
for the flow. This is shown in figure 3 for a case with unit Prandtl number and cold- 
wall exterior temperature. As Ma increases, the more vigorous motion which results 
causes this profile to depart from the nearly linear form it has a t  lower Marangoni 
numbers; the temperature gradient in the vicinity of the cold wall becomes 
particularly steep and the profile begins to become S-shaped (Kamotani et al. 1984). 
It has been conjectured by Kamotani et al. that the occurrence of such a surface- 
temperature profile is responsible for the onset of oscillatory thermocapillary 
convection. 

3. Energy-stability analysis 
We begin the energy-theory analysis of the basic state in the usual fashion by 

deriving the energy identity. We assume there exists a solution [ u , p ,  to the 
governing equations ((2.1), plus the unsteady analogue of (2.2)-(2.4)) which is an 
axisymmetric perturbation to the axisymmetric basic state, i.e. 

[u, P, rl = [W, zL0,  Wr, z),P(r,  z ) ,  @(r, z)l 
+ [U’b, z , t ) ,  0, W’(T, 2,  t ) , p ’ ( r ,  2, t ) ,  yb-9 z ,  t)I. (3.1) 

While the assumption of axisymmetric disturbances may limit the applicability of 
the results, available experimental evidence indicates that such an assumption is 
relevant for certain values of some of the parameters. Hopefully, the results of this 
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analysis, when coupled with subsequent results for three-dimensional disturbances, 
will identify these values. It is also hoped, on the basis of linear-theory results of Xu 
& Davis (1984), that the stability limits for axisymmetric and non-axisymmetric 
disturbances will not differ to a great degree. In  any event, at  the present time, 
available computer resources are insufficient to support the computational effort 
necessary to deal with this general case. 

Substitution of (3.1) into the governing equations and boundary conditions leads 
to a system of equations for the disturbance quantities. We then take the inner 
product of the disturbance momentum equation with u’, add to this the disturbance 
energy equation multiplied by P r y ,  and integrate over the volume 

V = ( ( r , O , z ) J O < r <  1 , 0 < 0 < 2 2 n , O < z < r )  

occupied by the liquid, using the disturbance boundary conditions. The result is the 
exact disturbance-energy evolution equation 

- = -PrD-MaI+PrJ ,  (3.2) 
dE 
dt 

where E = - (u’.u’+APrT’*)dV, s, 
D = (Vu’:Vu’+hVT’*VT)dV, 1 

s, J =  (-~’TL-hBiT’~)di?3 

and S is the free surface r = 1. The velocity and temperature disturbances have been 
joined by a positive coupling parameter h (Joseph 1976) to form a generalized 
disturbance energy, E,  and the quantity D in the production integral I is the 
symmetric basic-state deformation-rate tensor, 

u, 0 tcuz+wr, 

O I -  D =  [ U/r 

wz 
Employing the reformulated energy theory of Davis & von Kerczek (1973), (3.2) 

is divided by the positive-definite functional E and an upper bound is constructed for 
the resulting right-hand side, viz. 

-_ E at - - - ( - P r D - - M a I + P r J ) ~ v = m a x  E 
H (-Pr D - F I +  Pr J ) >  

(3.3) 
1dE 1 

where the maximum is taken over the space of kinematically admissible functions, 

H =  {u’, TIu’ = T = Oat x = O,r;u’  = Oat r = 0,I;V.u’  = 0). 

We choose to formulate the problem so that the Marangoni number is the stability 
parameter. For fixed values of the other parameters associated with the problem, the 
smallest value of Ma that corresponds to the condition v = 0 will be called Ma*(h). 

Since h is a free parameter, the maximum value of Ma* for positive values of h is 
sought (Joseph 1976). In the general case of three-dimensional disturbances, this 

* 
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value would be the energy-stability limit, Ma,, i.e. the flow would be asymptotically 
stable in the mean for Ma <Ma,.  Since we have restricted attention to two- 
dimensional disturbances, this value is, at  worst, an upper bound to Ma,. With this 
restriction in mind, we shall use the notation Ma, to refer to the value obtained from 
the present analysis, 

Ma, = maxMa*. (3.4) 
A > O  

In many analyses, the search for this maximum is not performed. Rather, the 
variable h is arbitrarily set to some value, say h = 1, and the result is accepted as a 
lower bound to the actual energy-stability limit. It will be seen that, for the problem 
of interest here, the effort necessary to determine Ma, is extremely worthwhile. 

3.1. Formulation of the discrete problem 
Typically, Ma* is calculated by treating the Euler-Lagrange system which arises 
from the maximum problem in (3.3). However, this approach is not practical here 
since the two-dimensional variation of the basic state prohibits the use of the 
standard normal-mode analysis to reduce this system of partial-differential equations 
to ordinary differential equations. Moreover, in the present problem, the basic state, 
which appears in the coefficients of these equations, is known only numerically. Thus, 
we choose to approach the calculation of Ma* by directly treating the functional Y 
in (3.3). 

It is convenient to consider a slightly different functional which incorporates the 
divergence constraint by means of a Lagrange multiplier. Hence, the maximum 
problem to be solved is expressed as 

max - P r D - M a l + P r J + 2  nV-u'dV+v(E-l) = 0, (3.5) 
h [ 1 1 

where P is a Lagrange multiplier expressing the arbitrary normalization E = 1, 
x(r,z)  is a Lagrange multiplier, and h is the extension of H obtained by removing 
the divergence constraint. It is easy to show that P =  v. Thus, since the stability 
condition is given by v = 0, we are interested in the variation of the quadratic 
functional 

F = - P r D - M a I + P r J + Z  nV-u'dV. 

A discrete version of this functional follows in an obvious way. A grid system, which 
divides the flow region into N rectangular subdomains, is chosen. The unknown 
values of the disturbance velocity and temperature at  the intersections of the grid are 
denoted by ui,,, wi,* and T,,*. Since the Lagrange multiplier n plays the same role as 
the fluid pressure, a staggered grid is employed for it (see figure 8 in the Appendix) ; 
the unknown values of n at the intersections of its grid are denoted by 7 ~ ~ , ~ .  The 
various derivatives in the integrals of F are replaced by finite differences. The 
integrals are approximated on each subdomain by finite summations using the 
disturbance boundary conditions, where applicable, and finally the discrete version 
of the functional, FD, is formed by summing over all N subdomains: 

1 

-Ma 5 [ut D,, + 2u, wi D,, + w; D,, 
1-1 
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(3.6) 

D,, is the ( i ,  j ) th  element of D, T has been replaced by # / A t  for convenience, K is the 
number of subintervals in the surface integral and (AlAz),, and (A/Ar), are finite- 
difference expressions for derivatives in the z- and r-directions, respectively. A single 
subscript in (3.6) refers to the average value of the respective dependent variable for 
the indicated domain of integration. Details of this process are provided in the 
Appendix. 

A stationary value of FD is located by differentiating it with respect to each 
unknown and setting each of these derivatives to zero, i.e. 

or =k,l* (3.7) 

This process yields a generalized algebraic eigenvalue problem. We seek the 
minimum positive eigenvalue of this system as the approximate (subject to 
discretization error) value of Ma*. Calling the vector consisting of the unknowns on 
all grid points X, we rewrite (3.7) in the matrix form 

AX = pB(Ma) X ,  (3.8) 

where A and B are indefinite, symmetric matrices with A having a banded structure 
and B depending on the basic-state deformation-rate tensor D. The symmetry of the 
discrete problem is consistent with that of the variational problem (3.5). Other 
discretizations were tried which did not preserve this symmetry and were therefore 
discarded. The dependence on the basic state, which depends in turn on the 
Marangoni number Ma, complicates the calculation ofMa* (Munson & Joseph 1971). 
For a given value of Ma,  denote the smallest positive eigenvalue of the generalized 
eigenvalue problem (3.8) by p*. If p* + M a ,  then a new Ma is chosen, the basic 
state recomputed, and the eigenvalues recalculated. This process is repeated until 
p* =Mu,  in which case, Ma* = p*. This, of course, assumes all other parameters, in- 
cluding the coupling parameter A,  are fixed, necessitating further computation to find 
Mu, according to (3.4). The numerical problem associated with these eigenvalue 
computations is, like the approach to the stability problem, somewhat uncon- 
ventional. For this reason, the procedure by which p* and Ma, are computed is 
described in some detail below. 

3.2. Numerical procedure for $ding Ma, 
Equation (3.8) represents a nonlinear generalized eigenvalue problem. The matrices 
A and B are symmetric and sparse, but, in general, indefinite. In addition to the 
basic-state dependence o f  B mentioned above, A and B depend on the other 
parameters of the problem, namely Pr, Gr and the coupling parameter, A. We first 
address the case that all these parameter are fixed, reducing (3.8) to the generalized 
eigenvalue problem 

where 11 - (1 denotes the Euclidean norm. 
AX = pex, llXll = 1 ,  (3.9) 
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The eigenvalues p of (3.9) may be real of either sign or be complex-conjugate pairs. 
To each null vector of B corresponds an ‘infinite’ eigenvalue (at least N of these are 
known to occur), while the null vectors of A yield zero eigenvalues. Standard linear- 
algebra software packages provide implementations of the QZ-algorithm for 
eigenvalue problems of the form (3.9). These packages compute all of the eigenvalues 
of the system (our stability result requires only a single eigenvalue), do not exploit 
the sparseness of A and B and are therefore suitable only for relatively coarse 
discretizations of the underlying continuous problem. The method adopted for the 
present computations makes use of both the symmetry and sparseness of A and B 
and computes only the eigenvalue of interest - the smallest, positive one. 

The algorithm of choice for finding a single eigenvalue of (3.9) appears to be some 
form of inverse iteration. The technique used here is a generalization of that employed 
by Bank &, Mittelmann (1986) for the simpler problem of finding the smallest 
eigenvalue of a positive-definite matrix. For this a starting vector X,, IlX,II = 1, is 
needed. Initially, this inverse-iteration process is started with a random vector. 
Subsequent iterations use previously computed eigenvectors corresponding to 
nearby parameter values. A first approximation for p is obtained through- the 

(3.10) 
Rayleigh quotient 

po = X,T AX/X,T BX,. 

In the unlikely event that the denominator is zero, a different X, has to be chosen. 
Given this initial pair X, and p,, the inverse-iteration procedure is performed as 

follows : 
1 .  Solve (A - sB) Y = (p, B - A )  X, and define Y = ( P- X, Y T X k ) /  11 Y- X, Y T X k ( ) .  
2 .  Form Q = [X,l yl and solve the 2 x 2 problem 

QTAQZ = TQ’BQZ 

for the eigenvalues T ~ ,  T* and associated normalized eigenvectors Z,, 2,. Without loss 
of generality let 

3. Set pk+, = T ~ ,  X,,, = QZ, and check for convergence. If not converged, 
increment iteration index k and repeat. 

Several remarks are in order on the above algorithm. The quantity s is a positive 
real number which has to be closer to the desired eigenvalue than to any of the other 
eigenvalues. While, in some applications this ‘shift parameter’ may have to be 
adjusted during the computation in order to satisfy this requirement, this was not 
necessary in the present case. Earlier computations with the QZ-algorithm for 
moderate-size problems had shown that, for the cases considered, there were no 
complex-conjugate pairs that were smaller in modulus than p*. Also, the negative 
eigenvalue of smallest modulus was similar in modulus to p*. It was thus relatively 
easy, with some rough knowledge of p*, to find a value for s. 

The eigenvalue problem in step 2 is basically an orthogonal projection of the 
original problem into the subspace spanned by the columns of Q,. Simpler inverse- 
iteration algorithms are indeed available ; however, their application to the present 
problem did not yield satisfactory results. In general, of course, this 2 x 2 eigenvalue 
problem may have complex eigenvalues, as well as real ones. While several 
precautions for this and other cases were put into the program, they will not be 
described here, being a rather technical detail. Eventually T~ will be positive and 
approximate p* while QZ, approximates the associated eigenvector. The quantities 
X,+&and 

While steps 2 and 3 need no further explanation, the solution of the linear system 

be the smallest positive eigenvalue. 

are related through the Rayleigh quotient (3.10). 
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in step 1 represents a non-trivial problem. The matrix on the left is symmetric but 
indefinite. The newest version of the FORTRAN subroutine SYMMLQ, part of the NAG 
library, was used. It applies a conjugate-gradient method and permits pre- 
conditioning by a positive-definite matrix. No attempt was made to find a near- 
optimal choice for the preconditioner. In all computations it was taken as the 
diagonal matrix with the ith element equal to the Euclidean norm of the ith column 
of the matrix A-sB. 

The convergence of the above inverse-iteration procedure is linear with a factor 
asymptotically equal to 

8-p* 

I.-p,l< 1, 

where pn is the next nearest eigenvalue of (3.9) to s. Choosing s close to p* will thus 
speed up convergence of the inverse iteration while, in general, requiring more 
conjugate-gradient iterations for the nearly singular system matrix. The essential 
computational requirement per conjugate-gradient iteration is one matrix-vector 
multiplication with the system matrix. 

In addition to this method for solving the eigenvalue problem, two outer iterations 
are needed to determine the energy-stability limit Mu,. The requirement that 
p*(Mu) = M u  suggests a fixed-point iteration. The second requirement, that Mu, is 
found as the maximum of all these p* with respect to A,  suggests an optimization pro- 
cedure. No attempt was made to simultaneously attack both these problems. Both 
possibilities of a successive solution were used, the fixed-point .iteration as either an 
inner or outer iteration. In the first case, say, when A is temporarily fixed, the 
following would be the well-known Picard iteration 

= P k + l  B ( p k )  Xk+l, = O ,  2, (3.11) 

where pkfl, X,,, is the solution found through the inverse-iteration procedure defined 
above. This iteration will only converge if Iqf(Mu*)l < 1, where cp denotes the 
relationship between pk+, and pk given through (3.11) and if started close enough to 
Mu*. A simple acceleration procedure due to Aitken (1926) was implemented to 
guarantee convergence : 

p p  = 

(3.12) 

8 

The sequence {pk}  converges quadratically if is twice continuously differentiable 
and cp’(Mu*) + 1. 

For completeness we also outline how the maximization of Mu* with respect to A 
was accomplished. Starting from an initial value A, and corresponding value p1 (or 
Mu,) two additional pairs of values are computed with their h-values in the vicinity of 
A,. Through these three points a quadratic parabola is fitted and the point 
corresponding to its maximum replaces one of the points. The parabola need not 
have a maximum; in the event that a minimum occurs, some modification is 
required. The details will again not be given here since they are straightforward. As 
is well known, maximization through successive quadratic interpolation has a 
convergence order of about 1.3. 

The iterative procedure described above provides a relatively efficient method to 
calculate Mu,. After computation of the first basic state, subsequent basic-state 
computations need fewer relaxations if they are done for a convergent sequence of 
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Marangoni numbers. Analogously, the inverse iteration only requires several (more 
than 1-2) iterations when initiated, i.e. with the random vector X,,. It is thus not 
surprising that the entire computation of Ma, took only a few times the amount of 
work needed for the first basic state and p*-computation. It should be noted that, to 
minimize inaccuracies introduced by differentiation of basic-state quantities, the 
basic state was computed on a grid with twice the resolution used for the stability 
calculations. 

3.3 Code verification 
Because of the complex nature of the half-zone problem and the unconventional 
approach employed to obtain energy-stability limits for this basic state, another 
related problem was sought for use in verification of the resulting computer code. The 
problem chosen was the stability of the static state in a fluid-filled cylinder in a body- 
force field heated from below. The governing dimensionless parameter for this 
problem is the Rayleigh number Ru ; as Ra increases from zero, the static state loses 
stability and convection sets in. Subsequent increases in Ra cause bifurcation to 
other flow states, but i t  is this first instability with which we are concerned, since it 
can be shown that the energy- and linear-stability limits for this coincide. We may 
thus compare our energy-stability limit for this case with linear-stability limits 
obtained previously by Charlson & Sani (1970) and Yamaguchi, Chang & Brown 
(1984). 

While the heated-cylinder problem has a cylindrical geometry similar to the half- 
zone, there are two significant differences which make it less than perfect for such a 
verification. First, the cylindrical surface of the heated cylinder is a rigid wall, 
meaning that no surface integral J appears in the energy identity analogous to (3.2). 
Second, the static basic state need not be computed numerically, so that the 
influence of inaccuracies in the basic-state solution on the stability limits cannot be 
observed, In spite of these reservations, there appear to be no other previously solved 
problems which are a better match to the problem of interest here. 

Energy-stability calculations were performed for the heated-cylinder problem for 
both perfectly conducting and perfectly insulated cylindrical surfaces. The results 
((Ra,)n = (RUE)$ = (Ra,);) obtained for unit aspect ratio are presented in table 1 as a 
function of grid density. Initial guesses of the eigenvalues (guesses below and slightly 
above the final result were tried) do not alter the results shown in the table by more 
than kO.01. For both boundary conditions, agreement with the linear limits of 
Charlson & Sani (1970) and Yamaguchi et al. (1984) is excellent. Results for aspect 
ratios other than unity were also verified with equal success. 

4. Results and discussion 
The calculations of Mu, described in $3  have been performed for a variety of 
parameters on both the Arizona State University IBM 3090-500E/VF super- 
computer and on an Ardent Titan mini-supercomputer in the Advanced Research 
Computing Facility of the Department of Mathematics; the results of these are 
summarized in tables 2 and 3 and figures 4-6. This procedure requires maximizing 
the smallest positive eigenvalue Ma* over the space of positive coupling parameters 
h according to (3.4), the other parameters remaining fixed. It is seen from the data 
that this variation is significant, amounting to two orders of magnitude for the cases 
presented. As implemented, the procedure described in $ 3  did not iterate to find a 
fixed point, i.e. p*(Ma) = M a ,  for each value of A,  since this would be an inefficient 
use of computational facilities. However, this was done for unit aspect ratio and two 
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6600 

6400 

( 
6200 

6000 
Ma* 

5800 

5600 

5400 

5200. 

Insulated Conducting 
Grid wall wall 

20 x 20 47.81 50.76 
40 x 40 47.61 50.52 
50 x 50 47.58 50.50 
70 x 70 47.56 50.46 
C k S  47.56 50.45 
Y , C & B  47.64 - 

TABLE 1. Calculated values of the critical Rayleigh number for the heated cylinder problem 
C k S - Charlson t Sani (1970) ; Y, C t B - Yamaguchi et al. (1984) 

- 

- 

0 0 0 - 

- 
- 
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- 
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0 

1OOO. 

values of the Grashof number to show the behaviour ofMa* with h ; a portion of these 
results is plotted in figure 4. For Gr = 1000, there is a clear maximum in Mu* for 
h x; 4.4 x For Gr = 0, initial computations did not use as fine a discretization as 
those presented here and did not consider values of A smaller than say O( with 
the result being that a maximum was not detected ; in fact, it appeared that Mu* was 
asymptotically approaching a maximum a t  A = 0. More recent results for A as small 
as lo-', however, indicate that there appears to be a maximum Mu* occurring near 
lo-'. Although the changes in Mu* computed for these smaller values of A are small, 
they are likely to be larger than the expected discretization error. This has been 
verified for the Gr = 0 case shown in table 2 with h = lo-'. Computations with grids 
of 40x38, 50x48 and 60x58 yielded values of Mu* of 6447, 6451, and 6312, 
respectively, compared to  6302 obtained with a 70 x 68 grid. From the data in table 
2, one can see that Ma* decreases quite rapidly with increasing h as one moves away 
from the maximum. 

Since h provides the coupling between the velocity and thermal disturbances in the 
energy functional E (see definition following (3.2)), the physical meaning of such a 
small maximizing A is unclear, other than to indicate, perhaps, that the nature of the 
instability may be more hydrodynamic than thermal. Considering for the moment 
the case Gr = 0, an examination of the discretized functional FD (3.6) shows that, 
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Ma* 

h 

2 
1 
0.50 
0.25 
0.1 
0.05 
0.01 
0.005 
0.001 
10-4  

4.4 x 10-5 
10-5 

10-7 

10-9 

10-6 

10-8 

Gr = 0 

62.9 
90.6 

131.9 
1 94 
333 
525 

1565 
2326 
4492 
6015 

6247 
6253 
6302 
6275 
6214 

- 

~~ 

Gr = lo3 

69.8 
99.6 

143.2 
207.3 

535 
1547 
2305 
4501 
5998 
6082 
5635 

- 

- 
- 
- 
- 

TABLE 2. Variation of Ma* with h for two values of Qr. For all cases, r = 1 ,  Pr = 1 ,  Bi = 0.3, 
@&) = -0.5 and a 70 x 68 grid was used 

as h + 0, the term in FD which becomes dominant is the hydrodynamic contribution 
to the surface integral. The two-dimensionality of the basic state, coupled with the 
global nature of energy-stability theory and the fact that disturbances are not 
necessarily dynamically admissible make detailed physical interpretation difficult. 
What is obvious, however, is that the order-of-magnitude variations of Ma* with A 
which are observed make the search for the maximizing h imperative. Had we merely 
adopted, sayMa* ( A  = 1) as a lower bound toMu,, the results would have been quite 
conservative and of little potential use to an experimentalist. 

The results given in table 3 are presented in terms of Re, = Ma,/Pr for 
convenience so that all will be of the same order of magnitude. For the cases of 
Gr = 0, Pr + 1, a value of is shown in the table for the coupling parameter. In 
these cases, a search for a maximizing A of less than this value was not performed, 
based upon experience with the Pr = 1, GT = 0 case and the weak variations of Ma* 
which were observed. The results corresponding to h = lo-' should be very close to 
the actual stability limits in these cases. 

Of interest are the variations of the energy limit with Pr, Gr and r. For a fixed 
value of the Grashof number, Re, (and therefore Mu,) increases monotonically with 
Prandtl number. For fixed Pr, however, the variations with Grashof number are not 
;ts simple, as seen in figure 5.  For Pr = 0.1, Re, increases with increasing Grashof 
number, while for Prandtl numbers of 0.5 and 1,  this trend appears to reverse. 
Although results could not be obtained for Prandtl numbers corresponding to those 
of the model experiments (see below), the behaviour of the results for larger Prandtl 
numbers is contrary to what might be expected on the basis of the physical argument 
posed by Xu & Davis (1984), namely that the density stratification of the half-zone 
should be stabilizing with increasing gravity. For Pr = 0.1, a very weak dependence 
of this type was indeed observed, meaning that the stability of thermocapillary 
convection in half-zones of such liquids cannot be guaranteed for as large a 
Marangoni number in a microgravity environment as it can on Earth. Of course, 
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6260 

6220 

6180 

6140 

6100 

Re, L 

5520 

5480 

5440 

L 
3740 

3700 

3660 

Pr 

0.01 
0.05 
0.10 
0.50 
1 .o 
1.1 
1.2 
I .3 
1.4 
1.5 
1.6 
0.005 
0.005 
0. I 
0.1 
0.5 
0.5 
1 .o 
1 .o 
0.1 
1 .o 
0.1 
1 .o 
0.1 
I .o 
0.1 
1 .o 

Q 

- 

- 

- 0 

- 

- 

- A 

- 

7 

- 

A 

0 

I I 

CT 

Re, 
2595 
2996 
3689 
5488 
6302 
6430 
6578 
6701 
6914 
7017 
7170 
301 1 
3023 
3708 
3734 
5397 
5462 
6163 
6082 
67 19 

10799 
4985 
8249 
21 10 
4509 
1363 
360 1 

A 
10-7 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

1.1 x 10-3 

3.7 x 10-4 
7.3 x 10-4 
5.4 x 10-5 

4.4 x 10-5 
10-7 

2.2 x 10-2 

9.8 x 10-6 
2.1 x 10-5 

- 
- 
- 
- 
- 
- 
- 

Grid 

70 x 68 
- 
- 
- 
- 

- 
- 

- 

- 
- 
- 
- 
- 
- 
- 

- 

- 
- 

- 

99 x 48 
99 x 48 
76 x 49 
76 x 49 
55x71 
55 x 71 
50 x 97 
50 x 97 

TABLE 3. Energy-stability results for axisymmetric disturbances. For all cases, Bi = 0.3 and 
@,(z) = -0.5 
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FIQURE 6. Variation of Re, (Gr = 0) with r: 0,  Pr = 1 ; 0,  Pr = 0.1. 

since these results are for stability to axisymmetric disturbances, a truly definitive 
statement of this kind cannot be made until a subsequent analysis for non- 
axisymmetric disturbances is performed. It is also important to keep in mind that 
these sufficient conditions for stability do not imply anything about when instability 
will occur unless the linear and energy limits can be shown to coincide. 

Another conjecture made by Xu & Davis (1984), however, appears to be borne out 
by the present results. As mentioned in 8 1, the smaller the aspect ratio of a half-zone, 
the smaller the class of disturbances capable of perturbing it. Calculations for 
0.5 < r < 2 for two values of Pr and fixed Gr show a marked increase in Re, for de- 
creasing r (figure 6). A comparison of the present energy-stability results with the 
large-r, linear-theory results of Xu & Davis is desirable. However, while basic- 
state computations for r = 5 yielded velocity profiles in the middle of the half-zone 
which are in excellent agreement with the analytical solution of Xu & Davis (1983), 
sufficient resolution is unavailable to perform meaningful stability calculations for a 
zone this long. 

It is also desirable to have results available for a wide range of all parameters 
present in the half-zone problem. In particular, to bridge the gap between high-PT 
model experiments and low-Pr crystal melts, attempts were made to calculate 
energy-stability limits for Prandtl numbers higher than unity. As seen in table 3, 
however, this process breaks down for Pr > 1.6. The reason behind this appears to 
be the fact that Re,(Pr = 1.6) = 7170, which means that Ma,(Pr = 1.6) = 11470, 
and the calculation of the basic state is failing to converge for the apparently higher 
Marangoni numbers associated with even larger Prandtl numbers. The calculation of 
Re, for Pr = 1, r = 0.5 also resulted in a high value for ReE, but in this case the basic- 
state calculation was achieved relatively easily since increased resolution was 
possible in this smaller aspect-ratio zone. 

Finally, figure 7 presents a comparison between the experimental results of 
Preisser et al. (1983) and the theoretical results obtained for zero Grashof number and 
unit Prandtl number. The experimental results of Kamotani et al. (1984), for Pr = 42 
and 64, lie above the results of Preisser et al. The experimental results have been 
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FIQURE 7 .  Comparison between result of present computations and model experiments. Present : 
0,  Ne, for axisymmetric disturbances with Pr = 1. Preisser et al. (1984): A, (radius = 2 mm); 
0,  (3 mm); W, (10 mm). 

resealed, using the radius R of the zone as the lengthscale appearing in the expression 
for the Marangoni number. While at  first sight the agreement appears to be excellent, 
it must be kept in mind that: (i) the theoretical results allow only axisymmetric 
perturbations ; and (ii) the experiments are for a high-Pr fluid (7 for sodium nitrate 
(D. Schwabe, private communication)). If Mu, continues to increase monotonically 
with Prandtl number as it does for the limited range of Pr computed, then results for 
Prandtl numbers corresponding to those of the experiments would clearly lie above 
the experimental data. This behaviour may imply any of the following about the 
theoretical and experimental results : (i) non-axisymmetric disturbances are indeed 
the ' most dangerous ' modes ; (ii) the assumption of an undeformable free surface is 
too restrictive; or (iii) the physical properties of the fluids used to construct the 
Marangoni number from the experimental data are incorrect. With regard to this last 
matter, the most uncertain of these properties is y ,  the rate of decrease of surface 
tension with temperature. However, more routinely measured properties are also 
subject to change as evidenced by the fact that the above-quoted Pr = 7 for sodium 
nitrate differs from the value of 8.9 reported by Preisser et al. 

What is cleqr from the present results is that the computed energy-stability limits 
are not conservative in the sense of yielding an absurdly low boundary for 
guaranteeing stability. Calculations of energy stability limits allowing for non- 
axisymmetric disturbances and a deformable free surface are clearly warranted. 
Ultimately, it is hoped that energy-stability calculations for a realistic model of an 
actual float zone allowing for melting/freezing and radiant heating will yield results 
which allow the crystal grower to better control the process and grow striation-free 
material. 
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FIGURE 8. Computational grids used in the stability calculations. Solid grid is for u', w', T ;  
dashed grid is for n. 
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Appendix. Discretization scheme 
The solution region is divided into subdomains as shown in figure 8, where the 

mesh for the mi terms is staggered from the mesh for the other dependent variables. 
The gradients in the dissipation integral are expressed at  the centre of each 
subdomain using the average values of two central-difference approximations along 
relevant lines. For instance, on the subdomain shown in the figure, the dissipation 
terms are approximated as 

where the subscript m means the quantity is evaluated at the midpoint of subdomain 
M .  Similar approximations were used for z-derivative terms. 

To approximate the production terms, we use the average of each quantity on 
subdomain M and multiply by the basic-state velocity/temperature gradient a t  the 
centre of M ,  e.g. 
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The integral imposing the continuity constraint is approximated as 

JMd7.u'dV x 7rm 2Ar 
'%+I, j r i i l -  '4, j Ti  + '%+I, j+1 Ti+1- ui, 5+1 T i  

W i ,  j+1- W i ,  L 
2A2 +(rm 2Az + r m  

The surface integrals are treated in a similar way, i.e. 

! k w I , j i w * , j + l l (  q5I9j+1-q5I A2 ' I )  Az 

Bi q52 dz w iBi (q519 j  + q 5 1 , j + l ) z  Az. 

where the subscript M ,  identifies the free-surface portion of subdomain M .  
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